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Abstract

A hybrid Eulerian-Lagrangian wave model is presented that solves the spectral
energy balance equation for surface gravity waves in varying depth. The energy of
each spectral component is advected along (Lagrangian) ray trajectories. The source
terms in the energy balance equation (e.g. interactions between wave components
and non-conservative processes) are computed on a fixed Eulerian grid and interpo-
lated onto the ray trajectories. The source terms are integrated in time along the
rays. This integration is performed in parallel over the entire model domain. The
main advantage of this new model, named CREST (Coupled Rays with Eulerian
Source Terms), is that refraction of waves by subgrid-scale depths variations is eval-
uated accurately using pre-computed rays, and thus the model can be applied with
relatively coarse source term grids to large coastal areas. Hindcasts of swell evo-
lution across the North Carolina continental shelf are presented for a source term
restricted to energy dissipation in the bottom boundary layer over a movable sandy
sea bed. The results show that the hybrid Eulerian-Lagrangian method is a viable
approach for accurate wave predictions in large coastal regions with nonstationary
boundary conditions. Good agreement between model predictions and field obser-
vations of swell decay supports the hypothesis that, in the absence of strong local
wind forcing, the evolution of waves across a wide, sandy continental shelf is dom-
inated by refraction and bottom friction, which is well represented by a moveable
bed parameterization.

1. INTRODUCTION

In shallow water, surface gravity waves are affected by sea bed features with a wide
range of scales. Wave refraction over large scale (nominally 1 to 10 km) bottom features
can induce dramatic variations in wave energy along the coast that are readily observed
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(e.g. Munk and Traylor, 1947). The effects of refraction on the evolution of wave spec-
tra are generally well understood, and accurately predicted by geometrical optics models
(e.g. Longuet-Higgins, 1957; O’Reilly and Guza, 1993). Smaller scale (one half to several
wavelengths) bottom features can scatter waves, possibly causing increased directional
spreading of waves on the continental shelf, and reduced wave heights near the shore.
Models for this process exist (e.g. Long, 1973) but concurrent observations of wave evolu-
tion and fine scale bathymetry data are not yet available to assess the importance of this
mechanism.

In addition to these relatively well understood energy conserving wave-bottom interac-
tion processes, wave evolution across continental shelves and in shallow marginal seas is
also believed to be strongly affected by non-conservative bottom boundary layer processes
(e.g. Shemdin et al., 1980; Bouws and Komen, 1983; Weber, 1988; Young and Gorman,
1995). For sea beds composed of non-cohesive sandy sediments, the dissipation of wave
energy in the bottom boundary layer is strongly dependent on the presence of sand ripples
formed by the near-bed wave orbital motion. Neglecting currents unrelated to the waves,
the bottom boundary layer can be classified in three regimes, based on the ratio of fric-
tion and buoyant forces acting on a sand grain, and represented by the Shields number 1
(e.g. Nielsen, 1981). For small values of ¢, the bottom morphology does not change, thus
retaining the history of past wave events and biological activity. In this ‘relict roughness’
regime wave energy dissipation is minimal as bottom velocities are small and turbulence
is weak. As ¢ increases past a threshold value 1. (typically 0.05 for well-sorted quartz
sand) the wave flow intermittently moves surficial sediments that organize into ripple
fields (e.g. Nielsen, 1981; Traykovski et al., 1999). These ‘active ripples’ sharply increase
the turbulent dissipation of wave energy as vortices are shed by the orbital flow at the
ripple crests. According to Madsen et al. (1990) the drag coefficient for spectral wave
motion over ripples is maximum for ¢ ~ 1.2¢.. Example swell conditions with this max-
imum drag are a peak period 7,,=12 s, and significant wave height H;, = 1.5 m in 25 m
depth over well sorted quartz sand with grain size D = 0.15 mm. For larger values of 1
the drag coefficient decreases as ripples are eroded. For very large values of ¢ (typically
1 ~ 201, corresponding to Hs; = 5 m keeping the other parameters unchanged) ripples
are obliterated and a layer of sediments moves with the water column (e.g. Li and Amos,
1999). Both the thickness of this ‘sheet flow’ layer and the drag coefficient increase with
.
Models for the evolution of waves over a movable sandy bed (e.g. Graber and Madsen,
1988; Tolman, 1994) usually involve a ‘ripple roughness predictor’ which, based on the
wave conditions and sediment nature, determines the flow regime, the type of bottom
features (e.g. Clifton, 1976; Wiberg and Harris, 1995) and their equivalent sand grain
roughness kx (e.g. Grant and Madsen, 1982; Madsen et al. 1990; Li and Amos 1998,
1999). This roughness predictor is combined with a hydrodynamic model of the bottom
boundary layer flow that predicts the corresponding wave energy dissipation. Most hy-
drodynamic models parameterize turbulence with a vertical profile of the eddy viscosity
(Kajiura, 1968; Grant and Madsen, 1979; Weber, 1991a, 1991b; see Wiberg, 1995, for a re-
view). The use of a single roughness length for spectral waves was validated in laboratory
experiments by Mathisen and Madsen (1999).

Most numerical models for the evolution of surface gravity waves across ocean basins,
marginal seas, and continental shelves that account for non-conservative processes are



based on a spectral energy balance (Gelci et al., 1957). The wave field can be represented
by the spectral energy densities F (z,k,t), in wavenumber space (k), as a function of
geographical space (z) and time (¢). Neglecting currents, the Eulerian energy balance

equation is given by (e.g. Whitham 1974):

83—1;+Vz'(2gF)+V@-(ng)=5 (1)
where V; and V} are horizontal divergence operators in geographical and wavenumber
space respectively, and ¢, (the group speed) and ¢, are the corresponding energy transport
velocities. The source term S (k,z,t) is the net rate of energy transfer to component
k resulting from wind forces on the sea surface, dissipation processes (wave breaking,
bottom friction) and nonlinear interactions with other components of the spectrum. In
most operational wave models the energy balance equation (1) or a similar action balance
equation is fully discretized in the 5 dimensional (k,z,t) space and integrated in time on
a Eulerian grid. These models are widely used in deep water applications where large
spatial and temporal scales of wave evolution allow for relatively coarse grids (e.g. The
SWAMP group, 1984; Komen et al, 1994).

In shallow water accurate representation of refraction may require grid resolution of the
order of 100 m. If the region of interest is small (less than 100 km?), a high resolution
Eulerian model is feasible and gives good results (Booij et al., 1999), but the computa-
tional cost is presently too large for larger shelf areas, even in a steady state formulation.
Additionally, finite difference approximations in these models cause numerical diffusion,
artificially spreading wave energy in time, z, and k space, in a way unrelated to the phys-
ical evolution of a wave spectrum over bottom topography. High-order finite difference
schemes and piecewise ray methods, using local ray trajectories to estimate the advection
terms of eq. (1), have been developed to mitigate this effect (Sobey, 1986; Young, 1988;
Benoit et al., 1996).

The spectral energy balance can also be formulated from a Lagrangian point of view:

dF

= =5 (2)
where the left-hand side is the rate of change of F' following a wave component along its
ray trajectory. Eqgs. (1) and (2) are equivalent for waves that obey a dispersion relation
of the form f = W (k,z,t) where f is the wave component frequency. However, in con-
trast to the Eulerian balance (1), the along-ray conservation of spectral densities is valid
only in k-space (Longuet-Higgins, 1957). Lagrangian wave prediction models based on (2)
usually assume a source term S equal to zero. This approach is suitable for narrow shelf
regions where propagation distances are too short for significant wave generation or decay
(O’Reilly and Guza, 1991). Lagrangian models avoid the numerical diffusion of finite dif-
ference schemes, but the ray trajectories are highly sensitive to topography details. The
scattering of rays over rough bottom topography causes physical diffusion of wave energy
that may broaden wave spectra in shallow water. The accurate representation of these
fine scale bathymetry effects in a ray model requires averaging over a large number of
rays, whether the rays be computed from initially parallel directions (forward refraction,
e.g. Bouws and Battjes, 1982) or from fixed points (back-refraction, e.g. O’Reilly and
Guza, 1993). Back-refraction models are not based on finite area elements, unlike forward



refraction and finite-difference schemes in Eulerian models, and thus have different con-
servation properties. For example finite-difference schemes are generally constrained to
conserve energy fluxes through the model domain, but the energy fluxes obtained through
spatial interpolation in a back-refraction model balance exactly only in the limit of high
spatial and wavenumber resolution. Nevertheless if resolution bathymetry is available,
a back-refraction ray model with high wavenumber resolution gives a potentially more
accurate representation of wave propagation than finite difference schemes.

Cavaleri and Malanotte Rizzoli (1981) included wind input and dissipation source terms
in a ray model. Their model parameterizes the source terms for each individual wave
component, and solves the energy balance equation independently for each ray, without
any coupling. In this study we include coupling between rays through a source term
that is parameterized in terms of the full energy spectrum. The source term S (k,t) is
evaluated at each point of a coarse Eulerian grid, and subsequently interpolated from this
grid onto ray trajectories. The energy balance equation (2) is solved along a full spectrum
of rays traced backward from each grid point to the model boundary. Spectral components
are advected from the model boundary along the precomputed rays while being modified
by the interpolated source terms, until they reach a grid point where all components are
combined into a full spectrum F (k, t) from which S (k,t) can be evaluated. The advection
and source term computations are performed simultaneously for the entire model domain.
This hybrid Eulerian-Lagrangian model essentially couples a Lagrangian energy advection
scheme with an Eulerian source term computation scheme. The formulation of the source
term computations is not constrained in any way by the advection scheme and thus can
be adapted from existing third-generation models.

In section 2 the details of the numerical model hereinafter referred to as CREST (Cou-
pled Rays with Eulerian Source Term), are described: ray computations, ray ensemble
averaging, source term interpolation, and time integration. The source term, restricted in
this paper to Tolman’s (1994) parameterization of wave energy dissipation on a movable
sandy bottom, is reviewed in section 3. A numerical implementation of the model for the
North Carolina continental shelf is described in section 4. Hindcasts of swell attenuation
across the shelf are compared in section 5 to observations from the DUCK94 experiment.
The parameterization of bottom friction, and the efficiency of hybrid Eulerian-Lagrangian
spectral wave models are discussed in section 6, followed by a summary in section 7.

2. NUMERICAL SCHEMES

The model consists of two parts. First wave rays are traced backwards from fixed
Eulerian grid points with positions z, to the model boundary. Second, these trajectories
are used to integrate eq. (2) in time, using an ensemble average over a large number of rays.
Along each ray, arriving at z; with a wavenumber vector k, we define a Lagrangian energy
density FL (t,7) as the energy density ‘upstream’ of z; at time ¢, where 7 is the energy
advection time from the local ray position to the grid point z,. The spectral densities F'*
are averaged over ensembles of rays within finite bands k; of the arrival wavenumbers k at
z;. The full Eulerian energy density spectrum F¥ (z,,k,t) at 2, is evaluated by combining
the average Lagrangian density predictions F'* (¢,0) at x, for all bands k;. A source term
S (m k. t) is determined at each grid point from the full Eulerian spectrum F'¥ and other
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local parameters (e.g. wind stress and bottom roughness). S is then interpolated in z
and k space to yield an approximate source term S (t,7) at the local ray positions and
wavenumbers which in turn modifies F'* (t,7) along the rays (Figure 1) . Rays and grid

FL(t+r,0)

F1a. 1. Schematic of the integration of the Lagrangian energy balance equation from
t to t + At along a single ray (solid curve) using a spatially interpolated source term.
Filled circles symbolize the magnitude of the energy density, and dashed arrows indicate
the interpolation of the source term from the Eulerian grid (squares) onto the ray at
increments §7. See section 2 for further details.

are thus coupled at 7 = 0 only.

The entire set of interpolation coefficients, representing the influence of the topography
on waves is precomputed once, and stored in files. Using these files and a time series of
wave spectra at the model open boundaries the energy balance equation is integrated in
time.

Although the Lagrangian energy balance (2) holds only for energy density in wavenum-
ber (k) space, the propagation of waves is formulated more conveniently using wave fre-
quency f and direction 6 as variables. In the following f and 6 are used throughout in
ray calculations, grid discretization and result displays, but the energy density in k space



is used in the energy balance calculations.
a. Model domain and boundary conditions

The model domain covers a region of known bottom topography. From an arbitrary set
of Ngp grid points (hereinafter called ‘model grid’) with locations (z;);— y,, @ triangular
mesh is generated using Delauney’s tessellation technique. The outermost points of the
mesh form the model boundary, which is therefore a polygon. Additional interior polygons
can be added to the boundary in order to represent islands in the model domain (Figure 2)
\. Ray trajectories are traced backward in time from the grid points z; until they cross a
boundary. For each z;, rays are computed for a large number of frequencies f; and arrival
directions ;. Depending on the geographical region covered by the model domain, rays
can be trapped in shallow water and end at the coast, or reach a deep water region where
they become straight, or cross the model boundary in a region of intermediate depth. In
all cases a ray is terminated when it crosses a triangle side connecting two boundary grid
points, and the Lagrangian energy density carried by the ray into the model domain is
approximated by a linear interpolation of the spectral densities at these two grid points
(Figure 2).

The boundary condition for the model is therefore fully prescribed by the spectral
densities at the grid points along the boundary, for directions toward the inside of the
boundary. On the open part of the boundary, spectra may be estimated from deep water
wave measurements or obtained by nesting the model within a larger scale wave model. On
the closed coastal part of the boundary, the energy entering the domain may be set equal
to zero (i.e. wave energy impinging on the coast is dissipated in the surf zone) or, in the
case of a steep coastline, determined by partially reflecting the shoreward energy flux. In
order to reduce the scattering of rays over large propagation distances, the model domain
can be subdivided into subdomains that are coupled through their common boundaries.
This technique reduces memory requirements by shortening the rays, at the expense of
some local numerical diffusion, as the energy that is transmitted through the boundary is
interpolated from boundary grid points (e.g. ray d in figure 2).

b. Precomputations

1) Rays.—

In applications presented here the model domain is small enough to neglect the curva-
ture of the earth, and use local Cartesian (x, y) coordinates. The geometry of wave rays is
determined by Fermat’s geometrical optics principle that the integral of the phase speed
c along a curve is minimum when this curve is a ray, which yields Snel’s law when bottom
contours are parallel. The ray equations are:

dx

E = COS(G) (38‘)
dy .

= = sin (6) (3b)
df ldc [dh . dh

&~ cdn |dw @) g s ®) (3)
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Fi1G. 2. Schematic of the boundary condition treatment for an arbitrary model grid
(squares represent grid points). The boundary (dashed lines) separates and couples adja-
cent model subdomains. Examples are shown of rays transporting energy into the model
domain from four different types of boundaries (a: shelf break, b: island, c¢: coast, d:
internal boundary between model subdomains) to a given grid point (large square). In
cases a and d energy is advected through the boundary, whereas in cases b and ¢ energy
is reflected from the boundary. In all cases, the energy is interpolated (dotted arrows) at
the boundary from the adjacent two boundary grid points.



with s a curvilinear coordinate along the ray, h the water depth, and 6 the angle between
the x axis and the tangent to the ray. Wave energy is transported along the ray with the
group velocity c, and the frequency f is conserved. In the linear approximation we have:

(2rf)® = gktanh (kh) (4a)
c = %tanh(kh) (4b)

1 kh
% = C<§+sinh(2kh)> (4c)

where k = |k| is the wavenumber magnitude.

Along the ray the local depth and bottom slopes are evaluated from a biquadric fit to
the bathymetry grid (Dobson, 1967). The wavenumber magnitude & is computed from f
using eq. (4a) and used to determine c, ¢, and 4£. With these parameters egs. (3) are
integrated using an error-controlled Cash-Karp Runge-Kutta scheme (Press et al., 1992)
with a variable step size.

Along each ray the position and direction (2,6™) are computed at small distance

intervals 6s = fTT,:LMT cqdT that correspond to a fixed advection time step 67. A 6T was

chosen for each frequency such that 6s = 200 m in deep water. The result of the ray
computation is a series of positions and directions (z™,6™) for each of the rays with m
ranging from 0 at the initial grid point to M at the domain boundary, with typical values
M ~ 1000 in the implementation presented in section 4.

M, 2™ and 9™ give the time lag, position and direction at the end of the ray, needed
to specify the boundary condition. Although waves can travel along the same ray in both
directions, the rays are used here only to advect energy from the boundaries to the grid
points.

2) Interpolation of boundary conditions and source term.—

At each position z™ along a ray, a local source term estimate S (z™™) is given by the
linear interpolation in space of source term predictions at the three grid points z, of the
local triangle. Since the source term is computed only at discrete directions 6;, another
linear interpolation, with weights w;", is performed over the two directions 6; that enclose
the local direction 6™ of the ray. The same procedure is used for deriving an estimate FB
of the energy density F* (TM) at the boundary:

Sam) = Y aluf's (z:.6) (50)
il

Fp = Y B PP (z,.6) (5b)
2,0

where the spatial weighting coefficients «}" and [3; are nonzero only for the three grid
points z; on the vertices of the local triangle, and the two points of the boundary segment
crossed by the ray, respectively.

In order to resolve the refraction of a single wave component and interpolate accurately
the source term onto the ray, a small time step 67 is required that is of the order of 10



to 100 s for typical swell group velocities (¢, = O(10 m s~ 1)) and scales (O(1 — 10 km))
of bottom features. This time step is too small for an efficient time integration of the
energy balance equation (2). This integration is performed here with a fixed larger time
step At (10 minutes in the calculations presented here), that resolves the typically slower
evolution of the wave energy and source terms in space, and temporal changes of the
offshore boundary conditions. The source term S (Eq. 5a) is averaged over an advection
time interval At™, that covers values of T from (n — 1) At to nAt:

Sto= > ARS (2;,6) (6)
i,
with A% = g > apup (7)

i =i,l'=l,m

where the summation over m includes all ray segments that fall within the time step At™.
In the applications presented here the timestep index n ranges from 0 at the grid point
to 10-50, depending on the location of the grid point, the frequency of the waves, and
the complexity of the topography. Higher frequency waves and rough topography require
more timesteps than low frequency waves and smooth topography, because the group
velocity decreases with increasing frequency and bending of rays over rough topography
lengthens the propagation path.

3) Finite bandwidth approximation.—

So far we have considered the evolution of the spectral energy density F'” (¢, 7) along a
single ray. Since individual ray trajectories are highly sensitive to the underlying bathym-
etry, the energy balance equation is ensemble-averaged over a ‘bundle’ of rays originating
from z; with frequencies and directions covering a small but finite bandwidth. The rays
that form a bundle can be scattered and follow different paths away from z;, therefore
the ray ensemble has a physical interpretation only at the grid points z, as a finite band-
width average. The ensemble averaged energy density F'* and associated source term
interpolation coefficients A7, are given by weighed averages of single-ray values:

Fl(tr) = Y bFEF(t7) (8a)
Bo= Y bAY" (8b)

where the summation is over all the rays in the bundle, and b, is the fraction of the finite
bandwidth attributed to the individual ray r.

Different rays from the same bundle may reach the boundary during different timesteps,
so that the ensemble average ‘boundary energy’ F; must be defined for each time step n:

I > BiFF (z;,6) (9a)
2,0

S b (91)

i =i, =1

Il

Il



where the summation is restricted to those rays that reach the boundary during time step
n.

Averaging over finite frequency-direction bands not only accounts for the scattering
of rays by refraction over bottom irregularities, but also has the advantage of avoiding
the ‘garden sprinkler effect’ of Eulerian models formulated for a discrete spectrum (e.g.
SWAMP group, 1984). A large number of ray computations (of the order of 1000 for
applications presented here) may be needed to obtain a stable ensemble average but these
time-consuming computations can be performed in parallel for different bundles and grid
points.

The results of the precomputation are the ensemble averaged interpolation coefficients

7 and BJj. Theses coeflicients are written to files that are used in the time-integration
scheme described below.

c. Integration in time

The energy balance equation (2), averaged over ray ensembles, is a unidimensional
time evolution equation that can be integrated using standard finite difference schemes.
However, a more accurate formulation is possible for linear or quasi-linear source terms.
The total source term S is split into a (quasi-)linear part A\F' and a residual term R that
includes constant and non-linear (in F') contributions:

dF

— =)\F+R 10

o + (10)
For X and R constants, eq. (10) has an exact solution for the evolution of F over one time
step:

11
: (11)
For A and R varying slowly in time and space an approximate solution is obtained by
replacing A and R in eq. (11) with average values. The interpolation of the total source
term AF' + R is more accurate with this formulation, provided that the gradients of A,
in k-space, z-space and time are smaller than those of F (see appendix B). For fully
non-linear source terms (i.e. A =0) eq. (11) reduces to a first order Euler scheme.

A and R are assumed to be known functions Q and © of the local wave spectrum
that can be adopted from parameterizations in existing Eulerian models. A and R are
interpolated from the Eulerian grid onto the rays using the precomputed coefficients AZ.
The complete integration scheme is given by:

F(t+ At) = F (t) exp (AAD) + R [M}

Source term evaluation (on the grid):

A(t)=Q(F¥ (1)) (12a)

R(t)=0© (F¥ (1)) (12b)

Interpolations (grid to rays coupling):

Fp(t) =) BiF* (z;,01.1) (12¢)
3,

10



X(E) = [DARN (2, 00t) FF (2, 00,1) | /D AGFP (2;,00,1) (12d)
2,1

il
R (8) =) AR (2;,6,1) (12¢)
il
Prognostic equation (along the rays):
FL(t+ At (n — 1) At) = F () + FE (¢, nAt) exp (X" (t) At)

exp (X” (t) At) -1

_A'_R” t — 12f
(t 0 (121)
Rays to grid coupling (at 7 = 0):
FE(t+ At,0)
FE(t+ At) = or (12g)
Fg (t + At)

where the frequency variable f; is omitted. Variables z,, and 60; are written explicitly
only in the interpolations eqs. (12.c,d and e). In eq. (12d) the weighting of A by the
corresponding energy density F'¥ allows the conservation of the source term AF in the
interpolation. The prognostic equation (12f) applies the interpolated boundary condition
and source term to the Lagrangian energy balance to determine F* at the next time
step. The Eulerian spectrum F'¥ is advanced to time t 4+ At with eq. (12g), closing the
set of equations. For grid points z; located on model domain boundaries, the spectral
densities F'¥ for waves travelling into the model domain are prescribed by the boundary
condition Fz. On the deep water boundary Fpg is set equal to the observed deep water
spectrum. At other external boundaries F'g is set equal to zero. At internal boundaries
FF for waves travelling into one domain are prescribed by F'¥ for waves travelling out of
the other domain. For all other components and interior grid points F'¥ follows from F~.
Each equation can be evaluated in parallel for all the ray ensembles and all grid points,
and different frequency bands are only coupled by the source term.

The accuracy of this scheme depends on the relative size of the Eulerian (T%) and
Lagrangian (T7,) time scales of wave evolution. For Tr < T, (e.g. a sudden and uniform
change in forcing conditions over the entire model grid) the dominant source of error is the
low order time integration scheme. If Tx > T, (e.g. strong energy dissipation at a fixed
location, with quasi-stationary boundary conditions and source term) the largest errors
may result from spatial interpolation of the source term. Large errors occur if either Tg
or Ty, are comparable to or smaller than At. For all cases presented in section 5, At is
small compared to both T and T,. An alternative predictor-corrector scheme was tested,
giving results that are indistinguishable from those of the scheme used here.

3. THE SOURCE TERM

Previous work by Young and Gorman (1995) and Herbers et al. (2000) suggests that
bottom friction is an important dissipation mechanism for energetic swell propagating
over a wide continental shelf. Bottom friction was incorporated in our hybrid Eulerian-
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Lagrangian model using Tolman’s (1994) parametrization of the interaction of waves with
a mobile sandy bed, neglecting mean currents and their effects on bedforms. It combines
a ripple roughness predictor by Madsen et al. (1990), with Grant and Madsen’s (1979)
hydrodynamic model, extended to spectral waves by Madsen et al. (1988). For the
sheet flow regime Tolman used Wilson’s (1989) extrapolation of river flows to oscillatory
boundary layers. The source term S at grid point z, can be expressed as a quasi-linear
function of the energy density F¥ (i.e. eq. (10) with R = 0) with an isotropic local decay
rate \:

S(&zﬁfyeyt) = )‘(zwfat) XFE(£i7f797t) (133‘)
Mg, /1) = —F. ubM (13b)
o “"2gsinh? (kh;)

where g is the gravity acceleration, h; is the local water depth, and k is the wavenumber
magnitude.

fe is a local dissipation factor that depends on sediment and wave characteristics. The
sediment parameters are a representative grain size D, specific density s = ps/p, where
ps and p are the densities of sediments and water respectively, and the critical Shields
number for sediment motion .. The wave parameters are representative orbital velocity
up, and horizontal displacement ay, at the top of the bottom boundary layer (see appendix
A for details).

In order to estimate f., first a skin friction factor f,, is determined by solving eqs. (A2)
iteratively for a grain roughness D. The corresponding Shields number ¢ = f/ u2/[g (s — 1) D]
quantifies the movement of sediments and indicates the ripple regime. The equivalent
grain roughness ky of the bedforms is parameterized as a function of i, ¥, ap, and uy.
For /¢, < 1.2 (i.e. in the ‘relict roughness’ regime), ky is taken to be 0.01 m. Beyond
1.21)., in the ‘active ripple/sheet flow’ regime, kx is the sum of a ripple roughness k, and
a sheet flow roughness ks (Egs. A3). Finally the total friction factor f,, (skin friction
and form drag) is determined by solving egs. (A2) again using the estimated bedform
roughness ky, and f. is assumed equal to f,, (e.g. Nielsen, 1992). For ¢/¢. < 1.2, f. is
limited to a maximum value of 0.30 (Jonsson, 1980).

The spatial interpolation of the source term onto ray trajectories may cause large errors
in the transition region from the ‘relict roughness’ to the ‘active ripple’ regime where f.
increases by one order of magnitude (Figure 3) Tolman (1995) proposed a subgrid model
of the source term that accounts for subgrid variations of i resulting from variations over
each grid cell of h, D, 1., the significant wave height H, and peak wave period 7T},. For
simplicity these five random variables were assumed to be Gaussian and independent. Be-
cause no information on the spatial variability of sediment characteristics was available, a
simpler subgrid model was implemented here. If uniform sediment properties are assumed
then both D and v, are uniform within each grid cell, leaving only three random variables
h, H,; and T,. In model simulations of swell evolution on the North Carolina shelf, using
observed incident wave conditions, most of the subgrid variability of the source term re-
sulted from the subgrid variations of water depths A rather than the wave parameters H,
and T},, and H; was correlated with h. This predominance of the depth variability was
also noted by Tolman (1995) and used in his computations.

In the present subgrid model spatial variations in the water depth h are represented by
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F1a. 3. Example relationships between dissipation factors f, and Shields numbers . The
solid line is Tolman’s (1994) parameterization for a representative grain size D = 0.15 mm,
and wave period 7' = 14 s. The dashed line shows corresponding values of f. using the
JONSWAP parameterization.

forming a histogram of depths for a grid cell that consists of the triangles surrounding the
grid point z,, using ten depth bins that span the mean + 2 standard deviations of h. A
corresponding linear theory shoaling correction of the wave spectrum is added to account
for correlations of Hs with h. A subgrid-averaged value of \ is obtained by averaging
estimates of A (for each depth bin, based on the corresponding shoaling-corrected wave
spectrum, eq. 13b) weighted by the depth histogram values.

A simpler empirical parameterization of bottom dissipation used in many operational
wave prediction models assumes that f, is inversely proportional to u; so that the factor
r= % is constant and the source term is given by:

2/ )]QFE (2. 1.0.1) (14)

S (2, f,0,t) =T [m

An average value I' = 0.038 m?s~3 was inferred from the JONSWAP North Sea experiment
(Hasselmann et al., 1973). This linear ‘JONSWAP’ parameterization (included in the
comparisons presented below) yields values of f. (f. = 2I‘ub_1 g~ 1) that are close to the
movable bed f., except in the active ripple regime, where the JONSWAP parameterization
predicts less energy dissipation (Figure 3).

4. MODEL IMPLEMENTATION AND FIELD DATA

The hybrid Eulerian-Lagrangian model (section 2) with a movable bed bottom dissipa-
tion source term (section 3) was implemented for the North Carolina shelf region between
35° N and 37° N (Figure 4). During the DUCK94 experiment a 100 km cross shelf tran-
sect of nine bottom mounted pressure sensors was deployed extending from 12 m depth
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Fig. 4: Bottom topography and model grid. The grid points where the source term is evaluated are the nodes of the triangular mesh. A linear interpolation is applied in each triangle to approximate the source term along the rays (Figure 1). The entire model domain is subdivided into subdomains separated by thicker lines. Grid points denoted with dots labeled A to I are the locations of pressure sensors deployed during the DUCK94 field experiment.


(site A) to 87 m depth (site I) (Figure 4; Herbers et al. 2000). The instrument deployed
at site H in 49 m depth was located within 2 km of 3-m discus buoy 44014 operated
by the National Data Buoy Center (NDBC). Between site A and the shore a pressure
sensor array was operated in 8 m depth by the Army Corps of Engineers Field Research
Facility, Duck, North Carolina. Other instruments on the inner shelf included current
meters, thermistors and conductivity sensors in depths ranging from 4 m to 26 m. Data
from these instruments show that outside the surf zone the depth-averaged currents are
mostly wind-driven with speeds usually in the range 10 to 20 cm s~—!, and occasional
stronger currents (> 50 ¢cm s™!) in storm conditions (Lentz et al., 1999). These currents
are generally much weaker than both the wave speeds and the near-bed orbital velocities
of energetic swell in shallow water. The effects of currents on the propagation of swell
and on the wave bottom boundary layer are neglected here.

Bathymetry data was derived from the National Ocean Service digital database and
additional bathymetric surveys conducted during the DUCK94 experiment (Herbers et al.,
2000). These data sets were merged and linearly interpolated onto a regular 6” longitude
by 6” latitude grid, using a standard Delauney tessellation technique (Figure 4). This
grid was then linearly transformed into a Cartesian z (west-east) and y (south-north)
coordinate grid (resolution 152 and 185 m respectively) that is used in the Lagrangian
ray integrations (egs. 3). Errors introduced by neglecting the curvature of the earth, are
small for the size (128 by 211 km) of our domain (O'Reilly and Guza, 1993).

The Eulerian model grid, much coarser than the bathymetry grid, consists of 329 grid
points arranged in triangles that vary in size from 5 km on the inner shelf to 10 km on
the outer shelf (Figure 4). Slightly coarser grids gave similar results, suggesting that the
resolution chosen here is adequate. The model domain was made as small as possible
while covering the shelf region through which most of the wave energy, measured by the
pressure sensors, has propagated. The model boundaries were chosen to be the 11 m
isobath (except around the 8 m array, where a grid point is collocated with the array),
the 400 m isobath, and the 35912’ N and 37°58’ N parallels. Swell energy enters the model
domain only through the deep water boundary where the spectrum Fg (f;, 6;,t) is assumed
to be spatially uniform. The model domain is subdivided into a main subdomain, around
sites A to I and additional subdomains (Figure 4). This allows for the representation of
waves coming from high incidence angles, and reduces the memory required to store all
the interpolation coeflicients, including those for trapped rays, to one gigabyte. Trapped
rays are not necessary for the present application, since energy enters the model domain
only through the deep water boundary, but were implemented for future applications
with other source terms and reflective boundaries. The use of subdomains, described in
section 2, introduces some numerical diffusion for waves propagating across the internal
boundaries, but these waves, with high incidence angles, carry a very small fraction of the
total energy in the present application.

For each grid point z,, rays are initially traced for 162 frequencies, at arrival direction
intervals of 0.25°. For each frequency the arrival directions are subsequently bisected
(O’Reilly and Guza, 1993) until neighboring rays have directions and positions at the
boundary within 2° and 5 km of one another, respectively. If the number of rays for a 3°
sector exceeds 500 the bisection is stopped. The rays are grouped in 19 x 120 bundles,
that represent finite bandwidths of the spectrum F'¥ (z;, f;,6;,t) with 19 frequencies f;
spaced exponentially with a 5% increment from 0.05 Hz to 0.12 Hz, and 120 directions 6;
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spaced linearly over a full circle with a 3 degree resolution. The number of rays per bundle
varies from Ny x 13 (initial number of rays before bisecting) to Ny x 500 (an upper limit
set for broadly scattered bundles), where Ny is the number of frequencies per frequency
band. Ny decreases from 9 for 0.05 Hz to 3 for 0.12 Hz.

Wave frequency spectra F'(f;,t), integrated over directions, are estimated from the
measured bottom pressure records at sites A-I, using a linear theory depth correction.
The offshore frequency-direction spectrum Fg (f;,0;,t) is estimated by combining the
frequency spectrum obtained from the pressure sensor at site H, with directional distrib-
utions estimated from the nearby NDBC buoy cross-spectra using the Maximum Entropy
Method (Lygre and Krogstad, 1986). This spectrum is back-refracted from site H to deep
water, assuming parallel bottom contours, and neglecting the time lag between site H and
the offshore model boundary. Although the offshore conditions generally varied slowly on
time scales of several hours, this spectrum is determined at 10 minute intervals, in order
to match the model time step At. Frequency-directional wave spectra on the inner shelf
were estimated from the 8 m depth array near site A (Herbers et al., 1999).

Based on core samples collected in 1997 on the inner shelf (Rebecca Beavers, Duke
University, personal communication, 1999), and earlier geological data covering the entire
shelf (Milliman et al., 1972; Swift and Sears, 1974) we crudely approximate the bottom
sediments in the entire area encompassed by the model with a thick uniform layer of fine
quartz sand (s = 2.65), with a representative grain size D = 0.15 mm and a critical
Shields number 1, = 0.05.

The accuracy of the source term interpolation and the representation of refraction in
the model is demonstrated with model tests described in Appendix B.

5. HINDCASTS

Hindcasts are presented for two time periods in 1994, October 17 through 21 and No-
vember 16 through 19, that are representative of fall weather patterns causing large waves
on the North Carolina coast. Wind sea and swell were observed in October, generated
by a storm that moved across the eastern United States into the North Atlantic, whereas
in November large swells arrived from Hurricane Gordon which remained in the western
Atlantic, south of Cape Hatteras. In both cases, the model was run both with and with-
out the bottom dissipation source term. Runs without the source term isolate the effects
of refraction and shoaling in the evolution of wave spectra, and the difference between
runs with and without the source term can be used to assess energy dissipation caused
by bottom friction.

a. October storm

On October 14 and 15 local winds from the north-east were strong enough to contribute
significantly to the energy balance on the shelf at the dominant (8-10 s) wave periods (Fig-
ure 5) . Strong wind forcing is evident at the NDBC buoy where the mean wave direction
0 (defined here as the direction of the first-order moment vector [ [k/k F (k) dk,dk,)
follows the local wind direction. As wave generation is not represented in the present
model, predictions are not expected to be accurate during the spin-up of this storm.
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Significant wave height (m)

F1G. 4. Three-hour averages of observed wind and wave conditions during the October
storm. (a) Wind speed (solid line), wind direction (O), and mean wave direction (x)
measured by NDBC buoy 44014 (near site H). (b) Significant wave height and peak period
estimated from pressure sensor H (peak periods were replaced by the NDBC buoy values
when smaller than 8 s). Vertical dash-dotted lines labeled ‘T’ (17 October at 23:30 EST)
and ‘I’ (19 October at 08:30 EST) indicate times for which more detailed analyses are

presented in Figures 7, 8.
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On October 15 the significant wave height observed at site H reached a maximum value
H, =53 m (4.3 m in the restricted model frequency range), with a peak period T,, = 11
s (Figure 5b). After October 16 local winds subsided and T), shifted to 15 s, indicating
a transition from wind sea to swell. Between October 15 and 18, H decreased to 2.3 m
(time I) followed by an increase to 2.8 m on October 19 (time II), with a narrow, swell
dominated spectrum (not shown). After October 19 H, and T, gradually decreased to
0.6 m and 10 s respectively.

Model predictions are presented only for the swell-dominated period October 17 to 21.
Predictions of H, with bottom dissipation are generally in good agreement with observed
H, on the outer (e.g. Figure 6a) and inner shelf (e.g. Figure 6b). The model predicts
the expected turning of § towards the shore-normal direction, owing to refraction by the
large scale shelf slope (Figure 7) . The observed shift in 9, up to 25 degrees between the
offshore buoy and the nearshore (8 m depth) array, is reproduced by the model (Figure
6¢). Observed and predicted 6 in 8 m depth differ by less than 5 degrees.

Model predictions without bottom dissipation show a small decrease in wave height
across the shelf that is caused by refraction and shoaling effects (Figure 6a,b). The model
with movable bed friction predicts a strong attenuation of H, across the shelf (Figures
Gb, 7) that is comparable to the observed attenuation. The observed and predicted decay
across the outer shelf is negligible except for a slight (10%) decrease of Hs on October 19
when swell energy was maximum (time IT in Figure 6a). Strong decay of Hy is observed and
predicted across the inner shelf, up to a factor 2 (equivalent to a 75% energy reduction)
(Figure 6b). The observed and predicted decrease of H, across the shelf is generally
smaller when Hj is smaller (e.g. compare times I and IT in Figures 6a, 6b). On October
21 when H, was less than 0.5 m, the observed and predicted H, (with and without bottom
dissipation) are nearly uniform across the shelf.

Details of the representation of bottom friction in the model are illustrated in Figure 8.
The predicted variation of the dissipation factor f. on the scale of the grid resolution con-
firms the importance of subgrid modelling of the movable bed (Tolman, 1995). Predicted
boundary layer regimes (relict roughness or active ripples) are sensitive to the offshore
wave conditions. On October 17 (time I in Figures 5, 6), the model predicts relict rough-
ness over most of the shelf with dissipation factors f. close to the relict regime minimum
(fe = 0.04) and a sharp transition to active ripples (0.08 < f. < 0.18) in depths shallower
than 25 m (Figure 8a). The boundary between active and relict ripples generally follows
the depth contours. The corresponding local decay rate || o foup sinh ™2 (kh) (egs. 13b,
Ala) is enhanced not only by the large increase in f., but also by the increase of the
bottom orbital velocity u; in shallow water. Seaward of site D, predicted Hg with and
without bottom dissipation are nearly equal to the observed H, whereas further inshore,
predicted Hy with and without bottom dissipation diverge sharply and predictions of H
with bottom dissipation reproduce the observed decay of H across the inner shelf (Figure
8b). The strongly enhanced dissipation predicted by the movable bed model on the inner
shelf is consistent with the observed variations in wave heights. However, the JONSWAP
parameterization also gives reasonable predictions of H, in this case.

On October 19 when the swell energy was maximum (time II in Figures 5, 6), the mov-
able bed model predicts active ripples on the entire shelf (Figure 8c). The corresponding
values of f. are maximum close to the shelf break (0.1 < f. < 0.12), and decrease in-
shore (f. = 0.04 at site B). A strong decay of wave energy inshore of site G is evident in
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the difference between model predictions of H; with and without bottom dissipation and
these energy losses (on average 0.35 W m~2 over the entire shelf) are consistent with the
observations (Figure 8d). Inshore of site D the model with the source term underpredicts
H, (overpredicts decay) by about 25 to 50 cm. The JONSWAP parameterization on the
other hand overpredicts H, by 40 to 60 cm, as might be expected from figure 3.

b. Hurricane Gordon

Although the eye of Hurricane Gordon remained south of Cape Hatteras, local winds
were strong (10-15 m s~1) on November 17 through the morning of November 18 (Figure
9a) . During the peak of this event (time III) when Hy ~ 10 m and T}, ~ 15 s (Figure 9a),
the local wind speed was about 13 m/s and the mean wave and wind direction differed
by about 30 degrees. Estimated values of the wind energy input in the model frequency
band (The WAMDI Group, 1988, eq. (2.9)) are below 2 W m~2 on most of the shelf,
while the predicted bottom dissipation rate is generally between 2 and 10 W m~2 (both
terms are maximum near the coast). Hence, although bottom dissipation appears to be
the dominant source term, neglecting the wind input in this case may cause significant
errors.

At time III the model predicts a gradual turning of the mean wave direction from
115° in deep water to 88° in 8 m depth (Figure 10) , in good agreement with the mean
direction (88°) observed at the 8 m array (not shown). Model predictions without bottom
dissipation yield a decrease in Hy from 8.5 m at site I near the shelf break to 7.4 m at
site B on the inner shelf. This attenuation, associated with the time evolution of the
storm and conservative shoaling and refraction processes, accounts for only part of the
observed decrease of Hs to 5.8 m at site B. Including movable bed dissipation brings the
model in better agreement with the observations (Figure 11b) .The predicted values of
the dissipation factor f, are about 10 times smaller than the values for the October event,
owing to larger Shields numbers. On most of the shelf, f. predictions vary between 0.01
and 0.02 (Figure 11a), corresponding to sheet flow. Active ripples are predicted close to
the shelf break in depths greater than 40 m. The representative bottom velocity up (a
linear function of H, for a given spectral shape) is 3 times larger than in the October
event. In an absolute sense, the dissipation rate |S| (proportional to feuy; eqs. (13)) is
a factor 3 larger than in the October event, but the relative decay rate |A| (proportional
to feup; eq. (13b)) is a factor 3 smaller. As a result, the predicted relative decay of H,
across the shelf, due to bottom dissipation, is weaker for the Hurricane Gordon case than
the October swell event (a 14% decrease compared to 36% in October, cf. figures 8d and
11b). The JONSWAP parameterization yields Hy predictions for Hurricane Gordon, that
are close to both observed Hs and movable bed predictions (Figure 11b).

6. DISCUSSION

a. Movable bed model

The comparisons between observations and model predictions suggest that the observed
decay of swell energy across the shelf is primarily the result of refraction and energy dissi-
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pation in the boundary layer over a movable sandy bed. Predicted wave frequency spectra
(not shown) are also in good agreement with observed spectra, except at very low frequen-
cies (f < 0.06 Hz) where energy levels are relatively low. The hindcast results suggest
large spatial and temporal variations of the dissipation factor f, as the seabed transitions
through different roughness regimes (Figure 3). Tests with different sand grain sizes in
the range of probable values for the region (0.15 to 0.2 mm) indicated little sensitivity
of the results. Although more accurate offshore wave data and detailed sediment distri-
butions are needed for comprehensive tests of the bed roughness parameterization, the
present results show a model tendency to overpredict swell damping, in particular in the
active ripple regime (Figures 6 and 8.d). The parameterization of the ripple roughness k,
was tuned to reproduce laboratory experiments with irregular but unidirectional waves
(Madsen et al., 1990). Field conditions, with directionally spread waves, are likely to
generate more irregular and less steep ripples, with smaller roughness k.., than laboratory
experiments (e.g. Nielsen, 1981). Therefore the estimates of k, may be biased high. A
reduction of k. by 30% significantly improved the model accuracy (not shown).

The JONSWAP parameterization gives a relative decay in wave height H/Ho¢fshore
that is constant for a given dominant frequency. The observations presented here, all for
swell with a peak period T, ~ 15 s, instead show a variable relative decay, in response
to changes in the wave height (e.g. Figure 6.b). Equivalent values of I, the JONSWAP
coefficient, were inferred from the movable-bed model hindcasts. At site F on the outer
shelf, we find 0.025 m?s~3, 0.11 m?s~3, and 0.050 m?s~3 at times I, IT and III respectively.
For the same times at site B on the inner shelf, I' values are 0.11 m?s—3, 0.095 m?s~3,
and 0.057 m2s~3 respectively. These values generally fall between the JONSWAP average
value I' = 0.038 m?s~2 , and the one obtained from observations in the Great Australian
Bight (Young and Gorman, 1995), I' = 0.152 m?s™3. Although the JONSWAP formula-
tion with the widely used value I' = 0.038 m?s~— gives reasonable wave height predictions
in most conditions (Figures 6, 8 and 11), it cannot reproduce the observed variations in
swell decay, and significantly overestimates wave heights in active ripple conditions, as was
also noticed by Weber (1991a). In contrast the constant roughness (ky = 4 cm) proposed
by Weber (1991) yields values of H, that are still too high (by 30 c¢cm) in the October
19 case, but too low (by 2.5 m) in the November 18 case (not shown). The movable bed
model, adopted from Tolman (1994) without any adjustments, captures this variability,
and fine tuning of all the empirical parameters, should further improve swell predictions.
However, the movable bed parameterization requires site-specific sediment data that are
not always available. Without such data, operational wave models may be better off with
more robust dissipation models (e.g. Weber, 1991a; Tolman, 1994; Luo and Monbaliu,
1994; Young and Gorman, 1995).

b. model efficiency

The new hybrid Eulerian-Lagrangian model CREST, presented here, was used to in-
vestigate the effects of a movable sandy sea bed on the transformation of swell across a
continental shelf. Other physical processes such as wave generation, resonant non linear
interactions between waves (Hasselmann, 1962) and resonant Bragg scattering of waves
by bottom features (Long, 1973) can be incorporated as additional source terms in the
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energy balance equation. Hence the present model provides an alternative to the Eulerian
finite difference scheme models commonly used for wave prediction. With Na; a typical
number of time steps for a ray bundle, and N, a typical number of interpolation coeffi-
cients A7}, and B} for a given time step, the CREST wave model requires memory space
for storing the interpolation coefficients that is a factor Na; x N, (of the order of 200 in
the calculations presented here) larger than the space used for storing the spectrum. Thus
CREST requires much more memory per grid point than an Eulerian model, that only
needs to store the spectrum. The hybrid approach is attractive for applications where
the spatial scales Lg of variations in the source terms are much larger than spatial scales
Lp of refraction effects. An Eulerian model describing refraction with a finite difference
scheme in space requires a grid resolving both Lz and Lg whereas the Eulerian grid in
the present model needs to resolve only Lg because Lg is resolved by the precomputed
rays. If Lg is much greater than Ly this property reduces drastically the number N, of
grid points required for an accurate integration of the energy balance equation. Reducing
Ngyp has the added benefit that in coarser grids fewer grid points are used to interpolate
of the source term for a given ray bundle, thus of reducing the number N, of interpolation
coefficients per time step. The implementation of an Eulerian finite difference scheme
with a resolution of about 500 m would have similar memory needs as the calculations
presented here.

The considerable memory burden imposed by the storage of the ray information can be
reduced by dividing the model domain into subdomains. The use of subdomains is clearly
a compromise between a pure Lagrangian advection scheme and practical considerations.
At the internal boundaries it re-introduces numerical diffusion in the advection and re-
couples the rays to the grid for 7 > 0. Although not necessary in the application presented
here it seems unavoidable for implementations of CREST on very large areas ( e.g. >
106 km?).

The representation by refraction alone of the effects of small scale bottom irregularities
is cumbersome in the present model, and may not reflect the entire complexity of that
process. A statistical representation of the interaction of waves with the smallest scale
bathymetric features (e.g. the wave-bottom Bragg scattering source term described in
Hasselmann (1966), and Long (1973)) appears attractive because it would improve the
physical description of wave-bottom interactions and the rays computed on smoother
bathymetry would be less scattered thus requiring a smaller number N, of interpolation
coeflicients.

The small number of grid points in CREST is also advantageous for complex source
terms (e.g. quartet interactions between wave components) that are prohibitively expen-
sive to evaluate accurately on a high-resolution grid. Furthermore the flexible model grid
generated from any arbitrary set of points can be tailored to the bathymetry and shape
of the model domain with higher resolution in the shallowest parts of the domain. In this
respect CREST is similar to the TOMAWAC model (Benoit et al., 1996).

For practical applications, computing ray trajectories is too expensive to allow a time-
dependent ray geometry. This prevents the use of CREST in regions with strong temporal
medium variations such as unsteady currents and tidal depth changes found in shallow
estuaries and macrotidal seas, unless an approximate representation of these effects as
source terms is found.
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7. SUMMARY

A non-stationary spectral wave model was developed using a hybrid Eulerian-Lagrangian
scheme to examine the damping of swell propagating across a wide, shallow continental
shelf. The model accurately represents refraction by advecting wave energy from deep wa-
ter along a full spectrum of precomputed ray trajectories to a large number of grid points
on the shelf. The source term in the energy balance is computed at each of these grid
points, based on the complete frequency-directional spectrum. The source term is then
interpolated from the Eulerian grid onto the rays, thus allowing for nonlinear coupling
of wave components traveling along different rays. The energy balance is averaged over
ensembles of rays to represent a finite spectral bandwidth. The (Lagrangian) computation
of energy advection along rays and the (Eulerian) source term evaluation are carried out
in parallel through the entire model domain. Source term formulations can be adapted
from existing third-generation wave prediction models, whereas the finite difference prop-
agation schemes of these models are replaced with a full Lagrangian ray method. This
hybrid scheme avoids the numerical diffusion and ‘garden sprinkler’ problems of existing
models that use finite difference schemes. The ray calculations and source term interpo-
lation scheme add considerable computational effort, but both the ray trajectories and
interpolation coeflicients are precomputed for a given coastal region and model grid. The
spectral energy balance is integrated in time with an efficiency comparable to existing
finite-difference schemes.

The model was implemented with a source term restricted to energy dissipation in the
bottom boundary layer over a movable sandy bed, as parameterized by Tolman (1994).
The model was used to hindcast swell evolution across the North Carolina continental shelf
for a range of wave conditions (significant wave heights between 0.5 and 10 m, and peak
periods between 8 and 17 s) observed during two storms in 1994. Good agreement between
observed and predicted variations of significant wave heights and mean wave directions
across the shelf supports the hypothesis that refraction and movable bed bottom friction
dominate the evolution of swell over a shallow sandy continental shelf.
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Appendix A

PARAMETERIZATION OF THE BOTTOM BOUNDARY LAYER

The bulk amplitudes of wave orbital velocity up and displacement ap at the top of the
bottom boundary layer are evaluated using equations (11) and (25) in Madsen et al.’s
(1988) model:

2 8m? f*

= /ﬁ sinh? (kh)F(E)dE (Ala)
2

2

a, = /& 2 (kh)F (k) dk (Alb)

For a linear profile of eddy viscosity, Grant and Madsen (1979) determined the skin
friction factor f., and total friction factor f,, (ratio of bulk stress and u?) as implicit func-
tions of the grain size D and equivalent grain roughness of the bedforms &y, respectively:

20 2 D or ky
I\ FLor fu 30k a (A2a)

fio or fu - (A2D)

2 (ker2 (2 % /z) + kei? (2 o /z))

where zp/[ is an adimensional roughness length, x is Von Karman’s constant (k = 0.4 for
clear water), and ker and kei are the zeroth order Kelvin functions.

In the presence of active ripples or sheet flow, ky is taken to be the sum of a ripple
roughness k, and a sheet flow roughness k;. Madsen et al. (1990) gave empirical values of
k, for random waves in laboratory experiments and Wilson (1989) extrapolated to waves
values of k; measured for river flows:

7/) —2.5

ky = ayx15 (1/}—) (A3a)
2.8 —0.4

ks = 057—2b a (A3b)
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Appendix B

MODEL TESTS

The error in the ray computation is controlled by the variable time step, but other errors
are introduced by the discretization in frequency and direction and the ray ensemble
average. The accuracy of the propagation scheme was tested by applying the model
with the source term set equal to zero to an idealized shelf with parallel depth contours,
for a uniform and stationary offshore boundary condition (Figure 12.a) . The mean wave
directions and directional distributions of energy predicted by the model agree closely with
analytical (Snel’s law) results (Figure 12.b and 12.c), demonstrating that ray integration
and discretization errors are small.

The model formulation assumes that the source term varies on scales comparable to or
larger than the spacing of the grid. This condition is required for a valid interpolation. The
accuracy of the interpolation scheme was tested by computing the source term directly at
20 additional grid points located along a ray segment (for 0.07 Hz waves) that covers a full
source term integration time step At = 600 s. Source term estimates interpolated onto this
ray segment with egs. (12d,e) in a hindcast of wave evolution across the North Carolina
shelf (section 5), are compared with direct estimates at the additional grid points in Figure
13 . Results (averaged over a time step At) show that the linear spatial interpolations give
a good approximation of subgrid variations in the source term. That is, the source term
gradients are rather well resolved by the grid. The interpolation is most accurate when
the ripple regime is the same at all the neighboring grid points. Overall, a quasi-linear
implementation of the movable bed source term (i.e. S = AF, R =0 in eq. (10)) (Figure
13.a), yields smaller errors than a non-linear implementation of the same source term (i.e.
A=0, R=Sineq. (10)) (Figure 13.b).
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Fig. 4: Bottom topography and model grid. The grid points where the source term
is evaluated are the nodes of the triangular mesh. A linear interpolation is applied in
each triangle to approximate the source term along the rays (Figure 1). The entire model
domain is subdivided into subdomains separated by thicker lines. Grid points denoted
with dots labeled A to I are the locations of pressure sensors deployed during the DUCK94
field experiment.
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